

Medicine and Health Sciences Geneeskunde en Gesondheidswetenskappe EzoNyango nezeeNzululwazi kwezeMpilo

METABOLIC DYSREGULATION IN CRITICAL CARE: HOW TO OVERCOME?

Prof Renée Blaauw

Division of Human Nutrition

PN Critical Care Webcast: December 2016

CONFLICT OF INTEREST

- I regularly give lectures that are organized by Fresenius Kabi and Nestlé Nutrition Institute Africa
- I serve on the Advisory Board for Fresenius Kabi, South Africa
- I provide consultancy work for ASPEN, Future Life,
 Fresenius Kabi and Nestlé Nutrition Institute Africa
- I received an unconditional grant for research from Fresenius Kabi
- I declare no conflict of interest which might have interfered with the scientific validity of this presentation

INTRODUCTION

Metabolic response to stress in critical illness:

Altered nutrient requirements

- Phased response
- Acute phase effects
 - Changes in energy expenditure
 - Changes in substrate utilization
 - Anabolic resistance
 - Increased protein breakdown
- Persistent inflammation

Altered substrate use

Hyperglycaemia

Muscle loss

Changes in body composition

DIETARY MANIPULATION OF DYSREGULATION

Altered nutrient requirements

Altered substrate use

Hyperglycaemia

Muscle loss

Changes in body composition

- Energy requirements
- Specific nutrient needs
 - Protein/ Amino acids
 - Glutamine
 - Lipids
 - Omega-3 fatty acids
 - Micronutrients
 - Vitamins and trace elements
 - Antioxidants

SUBSTRATE SUPPLY

- Indirect calorimetry vs Predictive equations vs Simplistic equations
- **■** ESPEN^{1,2}
 - Acute and initial phase: 20 25 kcal/kg/day
 - Recovery phase: 25 30 kcal/kg/day
- ASPEN³
 - High risk or severely undernourished: <20 kcal/kg/day</p>
 - 25 30 kcal/kg/day (normal BMI)
 - 11-14 kcal/kg actual body weight/ day for BMI = 30-50
 - 22-25 kcal/kg ideal body weight/ day for BMI >50

PROTEIN REQUIREMENTS

- ESPEN^{1,2}
 - 1.3 -1.5 g/kg ideal / actual body weight / day
- ASPEN³
 - 1.2 2.0 g/kg actual body weight/day for BMI <30
 - ≥ 2.0 g/kg ideal body weight/ day for BMI 30-40
 - < 2.5 g/kg ideal body weight/ day for BMI ≥40</p>

Disease-specific

1 Singer P et al. Clin Nutr 2009

2 Singer P et al. Clin Nutr 2014

3 McClave S et al. JPEN 2016

PERCENTAGE TARGETS ACHIEVED

- N=71 mixed ICU patients, Johannesburg, South Africa
- Median Energy intake = 26 kcal/kg/day
- Protein intake = 1.1 g/kg/day

Correlation between nutritional intake and clinical ICU outcome

- Prospective study in surgical ICU
- N = 48
- Average energy requirements:
- $29 \pm 7 \text{ kcal/kg/d}$

- Largest deficit during first week
- Cumulated deficits correlated with complications
- Cannot be compensated for

Correlation between nutritional intake and clinical ICU outcome

- N=886 mechanically-ventilated patients admitted to ICU
- Energy requirements = Indirect calorimetry
- Protein requirements: > 1.2 g/kg/d

Table 3. Relationship Between Nutrition Therapy and Intensive Care Unit, 28-Day, and Hospital Mortality^a

	Protein and Energy Target	Energy Target
Model 0 ^b		
Intensive care unit	0.91 (0.64-1.31), P = .626	1.03 (0.86-1.25), P = .733
28 d	0.59 (0.40-0.88), P = .010	0.90 (0.74-1.09), P = .291
Hospital	0.76 (0.58-0.99), P = .041	0.93 (0.81-1.08), P = .339
Model 1°		
Intensive care unit	0.79 (0.54-1.17), P = .242	0.99 (0.81-1.20), P = .886
28 d	0.51 (0.33-0.78), P = .002	0.84 (0.68-1.03), P = .085
Hospital	0.70 (0.53-0.94), P = .017	$0.91\ (0.79-1.06),\ P=.233$
Model 2 ^d		
Intensive care unit	0.72 (0.48-1.09), P = .116	0.98 (0.80-1.19), P = .834
28 d	0.40 (0.26-0.64), P < .001	0.79 (0.64-0.97), P = .024
Hospital	0.62 (0.46-0.84), P = .002	0.89 (0.77-1.04), P = .137

Correlation between nutritional intake and clinical ICU outcome

- N=886 mechanically-ventilated patients admitted to ICU
- Energy requirements = Indirect calorimetry
- Protein requirements: > 1.2 g/kg/d

Not meeting Protein <u>and</u> Energy targets were significantly correlated with:

- 28 day mortality
- Hospital mortality

ENERGY AND PROTEIN COMBINATION

Clinical Nutrition 35 (2016) 968-974

Contents lists available at ScienceDirect

Clinical Nutrition

Opinion paper

Protein-energy nutrition in the ICU is the power couple: A hypothesis forming analysis

Taku Oshima ^{a, 1}, Nicolaas E. Deutz ^{b, 2}, Gordon Doig ^{c, 3}, Paul E. Wischmeyer ^d, Claude Pichard ^{e, *}

INFLAMMATORY RESPONSE

An appropriate response

- Fights infection
- Coordinates metabolic response
- Supports wound healing

An inappropriate response

- Exaggerated inflammation
- Excessive production of free radicals and / or
- Immunosuppression
 - Increased risk of superinfection

Ott et al, Prostagl Leukotr Ess FA 2011

GLUTAMINE

- Non essential amino acid
- Most abundant free amino acid
- Conditionally essential during periods of stress
 - Increased requirements
 - Adequate stores for 24-48 hr
- Major surgery / critical illness

- Immune dysfunction
- Increased mortality
 - Indicator of poor outcome

Parenteral GLN and Hospital LOS in critically ill and patients undergoing major surgery

Parenteral glutamine and overall mortality in critically ill patients

29% reduction in mortality

Parenteral glutamine in critically ill patients Glucose control

- N=82 critically ill trauma patients
- i.v. Ala-Gln (0.5 g/kg/d) supplemented vs. isocaloric, isonitrogenous standard nutritional support

GIn group:

- Only 37% vs. 51% in the control group required exogenous insulin
- Glucose levels, though not significantly lower than in the control group, showed less variability

Grintescu et al, 2015

Lowering mean daily insulin requirements (63 vs 44 U/d, p = 0.0407)

Parenteral glutamine in critically ill patients

- Lower total infectious complication rate (RR 0.70, p<0.0001)
- ~1.5 days shorter LOS in the ICU (MD -1.61, p=0.04)
- 1.5 days shorter duration of mechanical ventilation (MD -1.56, p=0.02)
- Lower hospital mortality (RR 0.55, p=0.03)

Stehle et al, 2016, Clinical Nutrition

FATTY ACIDS

Figure 1. Parallel pathways of polyunsaturated fatty acid metabolism

McCowen & Bistrian 2005

OMEGA-3 FATTY ACIDS

Fig. 4. General overview of the synthesis of lipid mediators from arachidonic acid, EPA and DHA and of their effects on inflammation.

RESEARCH Open Access

Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis

William Manzanares^{1*}, Pascal L Langlois², Rupinder Dhaliwal³, Margot Lemieux³ and Daren K Heyland^{3,4}

MEDI

N-3 FATTY ACID ENRICHED LIPID EMULSIONS

n-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and ICU patients: a meta-analysis

Lorenzo Pradelli^{1*}, Konstantin Mayer², Maurizio Muscaritoli³ and Axel R Heller⁴

Critical Care 2012, 16:R184

- Meta-analysis on 23 RCT's to evaluate omega-3 enriched PN regimens in elective surgery and ICU patients
- n=1502 patients
- Parenteral omega-3 containing lipid emulsions vs other lipid emulsions without omega-3 fatty acids from fish oil

N-3 FATTY ACID ENRICHED LIPID EMULSIONS

Omega-3 fatty acid enriched lipid emulsions associated with significant reductions in:

Infection rate (39%)

Hospital LOS (3.29 days)

ICU LOS (1.92 days)

IVFE RECOMMENDATIONS

Recommended Dosage and Expert Opinions

- -0.7 1.5 (2) g lipids/kg/day^{1,2}
- Omega-6: 3 FA ratio = 2:1 to 3:1³
- Fish oil: $0.1 0.2 \text{ g/kg/day}^4$
- Infusion time: 12-24 hours

1 Singer P et al. Clin Nutr 2009 2 Vanek VW et al Nutr Clin Pract 2012 3 Mayer K. et al. 2006 4 Heller et al Crit Care 2006

MICRONUTRIENTS

Manzanares et al. Critical Care 2012, 16:R66 http://ccforum.com/content/16/2/R66

RESEARCH Open Access

Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis

William Manzanares¹, Rupinder Dhaliwal², Xuran Jiang², Lauren Murch² and Daren K Heyland^{2,3*}

Contents lists available at ScienceDirect

Nutrition

journal homepage: www.nutritionjrnl.com

Review

Micronutrient supplementation for critically ill adults: A systematic review and meta-analysis

Janicke Visser M.Nutr. a,*, Demetre Labadarios M.B.Ch.B., Ph.D. b, Renée Blaauw Ph.D. a

Fig. 3. Effect of micronutrient supplementation on overall mortality in critically ill patients. CI, confidence interval; M-H, Mantel-Haenszel method.

MICRONUTRIENT RECOMMENDATIONS

Recommendations

- All PN prescriptions should include a daily dose of multivitamins and trace elements¹
- Combinations of antioxidant vitamins and trace elements should be provided to patients requiring specialized nutrition therapy²

1 Singer P et al. Clin Nutr 2009, 2 McClave S et al. JPEN 2016

TAKE HOME MESSAGES

- 1. Nutrition is dynamic and exciting
- 2. Metabolic dysregulation can be altered through nutrition.
- 3. Nutrition prescription should be adapted according to patient needs and clinical condition.
- 4. One size does not fit all Individualize approaches are needed

