PRODUCT INFORMATION

GLUCOSE 5% & 10% FREEFLEX

Name of the medicine
Glucose monohydrate
Chemical name alpha-D-(+)-glucopyranose.
C₆H₁₂O₆
CAS registry number: 14431-43-7

Description
Glucose 5% is a sterile isotonic solution of glucose 5% w/v in Water for Injections, containing no preservatives. pH 3.5 to 6.5.

Glucose 10% is a sterile hypertonic solution of glucose 10% w/v in Water for Injections, containing no preservatives. pH 3.5 to 6.5.

Pharmacology
Glucose is a monosaccharide that provides the principal source of energy for the body. It is also involved in many additional areas of protein and fat metabolism.

Glucose is stored in the body as fat and in the muscles and liver as glycogen. When a rapid rise in blood sugar is required, glycogen quickly liberates glucose. However, when this supply is insufficient the body mobilises its fat stores to release energy.

Glucose also has a protein sparing function in the body. In the absence of glucose, energy can be produced from oxidation of deaminated amino acid fractions.

Glucose is the probable source of glucuronic acid, hyaluronates and chondroitin sulphates and can be converted to a pentose used for nucleic acid formation.

Glucose is metabolised to carbon dioxide and water thus providing water for body hydration as well as calories.

Indications
The solutions are indicated for intravenous fluid therapy designed to correct deficiencies in energy levels. Glucose 5% is also used to correct hydration levels. The solutions may also be used as solvents for intravenously administered drugs where compatibility has been established.

Contraindications
Glucose is contraindicated in the following:
- diabetic coma where blood sugar levels are excessively high
- glucose-galactose malabsorption syndrome
- anuria
- intraspinal or intracranial haemorrhage
- in dehydrated delirium tremens patients
- known allergy to corn (maize) and corn products
- patients at risk for ischaemic stroke
• use after an ischaemic stroke episode

Precautions
Glucose solutions should be used with caution in patients with overt or known subclinical diabetes mellitus, or with carbohydrate intolerance.

Intravenous administration of glucose solutions, especially as infusions, may cause fluid overload and a resultant dilution of serum electrolytes and possible peripheral and pulmonary oedema. Prolonged therapy should be monitored for changes in fluid balance, electrolyte concentration and acid/base balance.

Hyperglycaemia and glucosuria may occur as a result of an over rapid rate of infusion or metabolic insufficiency. Blood and urine glucose should be monitored regularly.

Glucose solutions should not be infused concomitantly through the same intravenous set as blood as agglomeration or haemolysis may occur.

Prolonged parenteral administration of glucose may affect insulin production. To avoid this it may be necessary to add insulin to the infusion. A review of the patient's oral hypoglycaemic agent or insulin requirements may be necessary.

Avoid use after an ischaemic stroke episode as under this condition the induced lactic acidosis aggravates the damage of brain tissues.

Thiamine diphosphate cocarboxylase is an essential coenzyme in carbohydrate metabolism, therefore patients having thiamine deficiency should be treated cautiously with glucose injection. This is particularly important in patients who chronically abuse alcohol as this may precipitate an overt deficiency syndrome, e.g. Wernicke’s encephalopathy.

Additives may be incompatible with glucose. Do not administer such preparations unless the solution is clear. Do not store solutions containing additives unless compatibility has been proven. While some incompatibilities are readily observed, one must be aware that subtle physical, chemical and pharmacological incompatibilities can occur. The medical literature, the package insert and other available sources of information should be reviewed for a thorough understanding of possible incompatibility problems. In particular, the product information document of any added medication should be checked for any incompatibility with the glucose injection.

Use in Pregnancy
Safety in pregnancy has not been established. Use only when clearly needed and potential benefits outweigh risk to the foetus.

Use in Children
Glucose solutions, particularly hypertonic ones, should be used with care and under expert supervision in paediatric patients. Dosage should be adjusted accordingly. Use with caution in infants of diabetic mothers.

Interactions
Parenteral fluids, especially those containing sodium ions, should be administered with caution to patients receiving corticosteroids or corticotrophin.

Adverse Reactions
Glucose 5% Injection is iso-osmotic with blood and may be administered intravenously via a peripheral vein. Local reactions such as phlebitis or venous thrombosis and extravasation may occur. A fever response and infection at the site of injection may also occur due to contamination of the solution or poor techniques of administration.

Hyperglycaemia and glycosuria may occur if glucose is administered at a rate greater than 0.5 g/kg/h. Disruption of the fluid and acid-base balance and dilution of electrolyte concentrations may occur during prolonged usage, resulting in oedema, hypokalaemia, hypomagnesaemia and hypophosphataemia (see Precautions).

Vitamin B complex deficiency may occur with glucose administration.

Dosage and Administration
Glucose 5% Injection may be administered intravenously via a peripheral vein. The maximum rate at which glucose can be administered without producing glycosuria is 0.5 g/kg/h.

Glucose 10% Injection is hypertonic and should preferably be administered via an IV catheter in a large central vein. If a peripheral vein is used a large arm vein should be selected and the infusion site changed daily. The rate of infusion should not exceed 0.5 g/kg/h to avoid glycosuria. The dose of glucose is dependent on the age, weight and fluid, electrolyte, glucose and acid-base balance of the patient.

Solutions containing glucose should not be administered through the same lines as those containing whole blood due to the risk of haemolysis and clumping. It does not contain antimicrobials. For use in one patient, on one occasion only. Residue should be discarded. Care should be taken with intravenous administration and injection technique to avoid injection site reactions and infections.

Overdosage
Hyperglycaemia and glycosuria, if undetected, can lead to mental confusion, dehydration, hyperosmolar coma and death.

In case of overdose please contact the Poisons Information Centre on 131126 (Australia) or 0800 764 766 (New Zealand) for advice on management.
Treatment
Appropriate treatment may include decreasing the infusion rate of glucose and administration of insulin.

Fluid overload and biochemical imbalance resulting from overdosage and glucose solution should be treated with appropriate corrective therapy.

Presentation and storage conditions
Freeflex Bags – Store below 25°C

Glucose 5% injection in freeflex® bags:
50mL AUST R 144669
100mL AUST R 144671
250mL AUST R 144672
500mL AUST R 29599
1000mL AUST R 47389

Glucose 10% injection in freeflex® bags:
500mL AUST R 29790

Name and address of the sponsor
Fresenius Kabi Australia Pty Limited
Level 2, 2 Woodland Way
Mount Kuring-gai NSW 2080
Australia
Telephone: (61-2) 9391 5555

Fresenius Kabi New Zealand Limited
60 Pavilion Drive
Airport Oaks, Auckland 2022
New Zealand
Freecall: 0800 144 892

Poison schedule of the medicine
Australia: Nil
New Zealand: General Sales Medicine

Date of first inclusion in the ARTG
9 May 2006

Date of most recent amendment
18 May 2016